

Clase 7 y 8 Conociendo la función cuadrática

Actividad 1:

Identifica los coeficientes numéricos de cada función cuadrática:

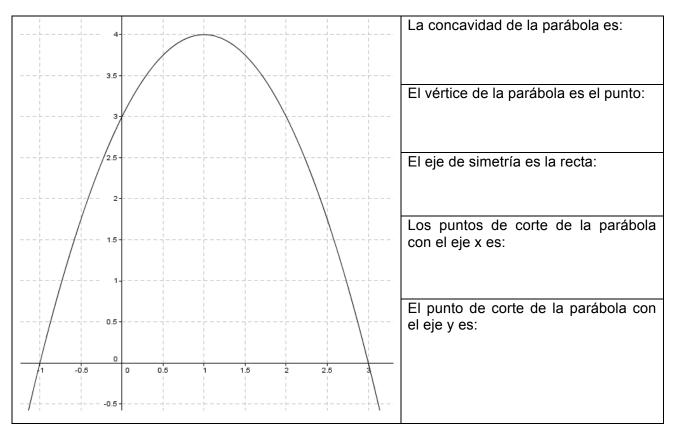
Función	а	b	С
$f(x) = 5x^2 + 3x - 8$			
$f(x) = x^2 - 6$			
$f(x) = -x^2 - \frac{3}{5}x + 2$			
$f(x) = \frac{1}{3}x^2 - x + 6$			
f(x) = (x-3)(x+2)			
f(x) = x(x - 0.5)			
f(x) = 5x(x+2) + 6			

Actividad 2:

Determina la concavidad de cada una de las siguientes funciones cuadráticas:

a)
$$f(x) = -3x^2 - 7x + 10$$

b)
$$f(x) = x^2 - 10x - 9$$


c)
$$f(x) = -(x+6)(x+7)$$

Actividad 3:

Dada la siguiente parábola, responder:

Actividad 4:

Construye la tabla de valores y gráfica las siguientes funciones cuadráticas: (Utiliza papel milimetrado y pega tu gráfico en el espacio destinado)

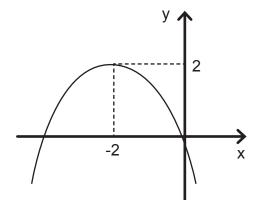
a) $f(x) = x^2 - 4$, con x = -3, -2, -1, 0, 1, 2, 3

b) $f(x) = x^2 + 1$, con x = -2, -1, 0, 1, 2

c) $f(x) = -x^2 + 10x$, con x=0, 1, 2, 3, 4, 5, 6, 8, 10

d) $f(x) = x^2 - 5x$, con x=0, 1, 2, 3, 4, 5

e) $f(x) = x^2 + 2x + 1$, con x = -3, -2, -1, 0, 1



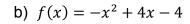
Actividad 5:

Resolver.

En la parábola de la figura 3, la ecuación del eje de simetría es:

- A. x = 2
- B. y = 2
- C. x = -2
- D. y = -2

Clase 9 y 10 Parámetros de la función cuadrática


Eje de simetría:

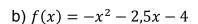
La ecuación del eje de simetría es $X = x_0$ o X = -b 2a

Actividad 1:

Determine el vértice y eje de simetría de las siguientes funciones

a) $f(x) = x^2 + 2x + 3$

c) $f(x) = 2x^2 + 3$


Intersección de la parábola con el eje de las ordenadas (eje y):

Las coordenadas del punto de intersección de la parábola asociada a la función $f(x) = ax^2 + bx + c$ con el eje y serán: (0,c)

Actividad 2:

Determine el punto de la intersección de la parábola con el eje de las ordenadas

a)
$$f(x) = x^2 + 10$$

c)
$$f(x) = 3x^2 + 8x - 5$$

Intersección de la parábola con el eje de las abscisas (eje x):

Corresponden a los puntos $(x_1,0)$ y $(x_2,0)$ dónde x_1 y x_2 son las soluciones de la ecuación $ax^2 + bx + c = 0$ asociada a la función $f(x) = ax^2 + bx + c$.

Actividad 3:

Determine el (o los) punto(s) intersección de la parábola con el eje de las abscisas.

a) $f(x) = x^2 - 1$

h`	١	f(x)	=	$2x^2$	- x	_	3
U,) .	ノ(ル)	_	$\Delta \lambda$	л		J

c) $f(x) = x^2 - 3x + 4$

Actividad 4:

Dada la función $f(x) = x^2 - 4x + 3$, determinar:

a) Concavidad:
b) Vértice: (indicar si es un máximo o mínimo)
c) Eje de simetría:
d) Intersección con el eje y:

e) Intersección con el eje x:

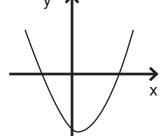
cuaderno estudiante 41

f) Gráfica:

Actividad 5:

Resolver:

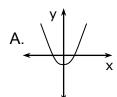
- 1. Considere la parábola $y = \frac{1}{2}x^2 x + \frac{1}{2}$ ¿Cuál(es) de las siguientes afirmaciones es (son) verdaderas?
 - I)La parábola se abre hacia arriba
 - II) Su vértice se encuentra en (1,0)
 - III) Su eje de simetría es x=1
- A) Sólo I
- B) Sólo I y II
- C) Sólo I y III
- D) Sólo II y III
- E) I, II y III
- 2. El vértice de la parábola asociada a la función $y = 3x^2 + 2$ es
 - A) (0,2)
 - B) (2,0)
 - C) (-2,0)
 - D) (0,-2)
 - E) $\left(-\frac{1}{3},0\right)$

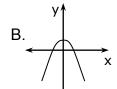


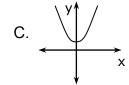
3. En la figura 6, el gráfico de $f(x) = x^2 - 6x - 2$ intersecta al eje de las ordenadas en el punto

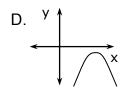
4. El eje de simetría de la parábola asociada a la función $y = x^2 + 2x - 5$ es

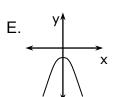
A)
$$x = \frac{3}{2}$$

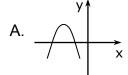

B)
$$x = 1$$

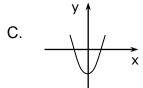

C)
$$x = 0$$

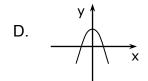

D)
$$x = -1$$

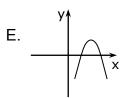

E)
$$x = -\frac{3}{2}$$

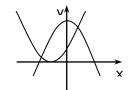

5. ¿Cuál de los siguientes gráficos representa mejor a la función $f(x) = -x^2 + 2$?

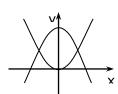




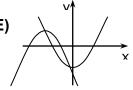



6. Si a < 0, b > 0 y c < 0, el gráfico de la parábola $y = ax^2 + bx + c$ queda mejor representado por:

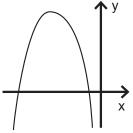



- 7. El vértice de la parábola $f(x) = x^2 8x + 5$ corresponde al par ordenado:
 - **A.** (4,11)
 - **B.** (4,-11)
 - **C.** (-8,5)
 - **D.** (-4,11)
 - **E.** (8,5)
- 8. La gráfica de la función $y = 3x^2 2x 4$ intersecta al eje Y en el punto:
 - A. (0,-3)
 - B. (0, -4)
 - C.(0,3)
 - D. (0, -2)
 - E. (0,4)

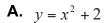
9. Las parábolas $y = -x^2 + 2x - 1$ e $y = x^2 - 4$ están mejor representadas en la opción:



D)

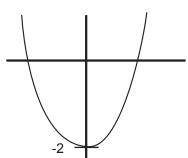


- 10. Respecto del gráfico de la función $y = x^2 + 4x + 1$, es correcto afirmar que:
 - I) tiene un mínimo valor en el punto y = -3
 - II) es simétrico respecto de la recta x = -2
 - III) intersecta al eje y en el punto de coordenadas (0,1)
 - A.Sólo I
- B. Sólo II
- C.Sólo III
- D. Sólo II y III
- E. I, II y III



- 11. La función de la gráfica cumple las siguientes condiciones:
 - **A.** $\Delta > 0 \land a > 0$
 - **B.** $\Delta = 0 \land a < 0$
 - **C.** $\Delta > 0 \land a < 0$
 - **D.** $\Delta < 0 \land a < 0$
 - **E.** $\Delta = 0 \land a > 0$

12. La función que representa la curva dada es:



B.
$$y = x^2 - 2$$

C.
$$x = y^2 + 2$$

D.
$$x = y^2 - 2$$

E.
$$y = -x^2 - 2$$

13. El eje de simetría de la función $y = x^2 - 2x - 3$ es:

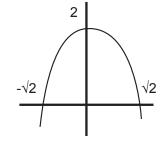
A.
$$x = 1$$

B.
$$x = -1$$

C.
$$x = 3$$

D.
$$x = -3$$

E.
$$x = 4$$


14. ¿Cuál es la función cuadrática cuya representación gráfica es la parábola de la figura?

A.
$$y = 2x^2 - 2$$

B.
$$y = x^2 - 2$$

A.
$$y = 2x^2 - 2$$

B. $y = x^2 - 2$
C. $y = -x^2 + 2$

D.
$$y = -x^2 - 2$$

E. $y = x^2 + 2$

15. Las coordenadas del punto en que la parábola asociada a la función $f(x) = 5x^2 - 7x + 9$, intersecta con el eje Y son:

- **A.** (-9,0)
- **B.** (0, -9)
- **C.** (9,0)
- **D.** (0,9)
- E. no se puede determinar

16. Con respecto a la función $f(x) = 3x^2 + 13x - 10$. ¿Cuál (es) de las siguientes afirmaciones es (son) verdadera (s)?

- I. Su concavidad está orientada hacia arriba
- II. El punto de intersección con el eje y es (0,-10)
- III. f(-2) = -24
- **A**. I
- B. I y II
- C. I y III
- D. II y III
- E. Todas ellas