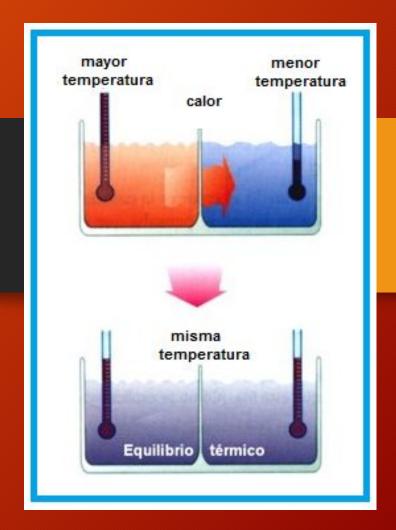
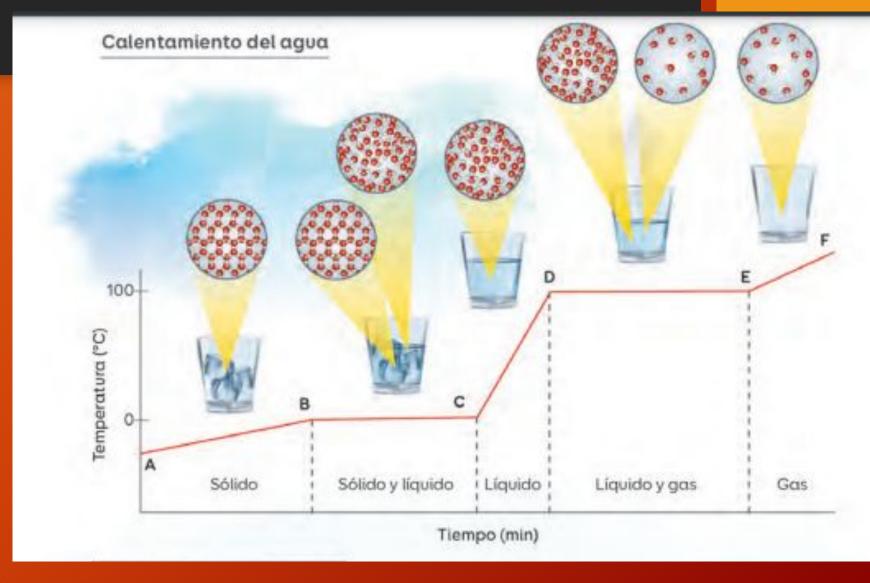
Liceo Miguel Rafael Prado

FISICA 8° BASICO


Cantidad de calor cedido y absorbido en un proceso térmico

Profesora: Elizabeth Huenupe

Profesora practicante: Llanara Morales Duratt


Instrucciones Generales

- ✓ NO IMPRIMAS este material
- ✓ Si estás en un computador, presiona F5 en el teclado para ver las animaciones.
- Si estas en un celular, ponlo de manera horizontal.

RETROALIMENTACIÓN: Efectos que produce el

calor en el agua.

¿En qué situaciones cotidianas presenciamos la pérdida y ganancia de energía calórica?

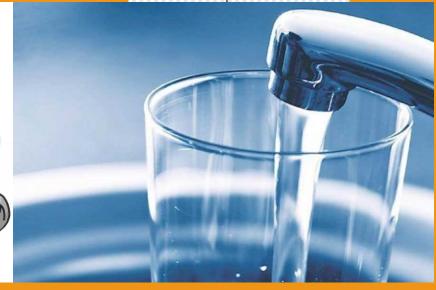
Objetivo de la clase:

- → Identificar situaciones cotidianas donde se evidencie cuerpos que absorben y ceden calor.
- → Aplicar contenido mediante la resolución de ejercicios.

¿QUÉ VEREMOS HOY?

- 1. Experimentando ¿Qué fenómeno se observa?
- 2. Capacidad calorífica
- 3. Calor específico
- 4. Ecuación Calor (Q)

Experimentando


- → ¿Qué diferencias observaron al calentar cada globo?
- → Cómo explicarías estas situación/ ¿cuál crees que sería la explicación física?

- → ¿Qué diferencias observaron al calentar cada globo?
- → Cómo explicarías estas situación/ ¿cuál crees que sería la explicación física?

Capacidad calorífica de un cuerpo

✓ La capacidad calorífica de un cuerpo es la relación que hay entre el calor suministrado al cuerpo y su incremento de temperatura.

- Dificultad con la que un cuerpo incrementa su temperatura.
- A mayor Capacidad Calorífica, menor aumento de temperatura

Capacidad calorífica de un cuerpo

Se puede calcular a través de la expresión:

$$C=Q/\Delta T$$

- Dificultad con la que un cuerpo incrementa su temperatura.
- A mayor Capacidad

 Calorífica, menor
 aumento de temperatura

Capacidad calorífica de un cuerpo

→ Tipo de material del cuerpo:

→ Cantidad de masa del cuerpo:

Estos dos factores nos permiten definir el **Calor Específico**

¿Qué es el calor específico?

Es la cantidad de energía térmica necesaria para que 1 g de una sustancia eleve su temperatura 1°C.

- → La madera requiere mucho más calor para aumentar su temperatura que el metal.
- → El calor específico de la madera es mucho más alto que el calor específico del metal.
- → A mayor calor específico de una sustancia, mayor calor hay que intercambiar para conseguir variar su temperatura.

¿En qué otras situaciones se puede observar este fenómeno?



Ecuación fundamental de la Termología

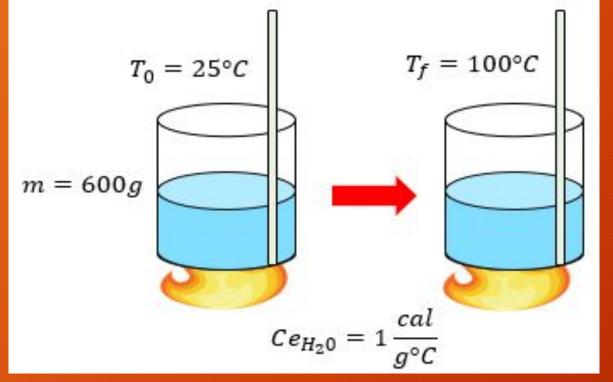
Expresión matemática que se utiliza para determinar cuánto calor absorbe y cede un cuerpo

Ecuación fundamental de la Termología

HAY DOS POSIBLES RESULTADOS:

→ Si aumenta la Temperatura:

$$\Delta T > 0$$

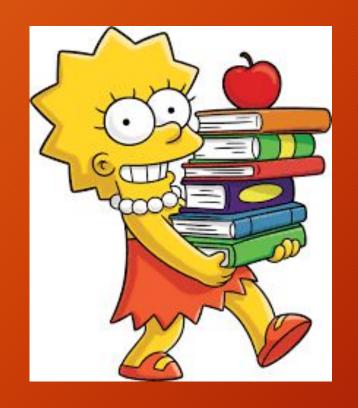

→ El calor será positivo, lo que indica que el cuerpo gana energía térmica. → Si disminuye la Temperatura:

$$\Delta T < 0$$

→ El calor es negativo, lo que indica que el cuerpo pierde energía térmica.

EJEMPLO:

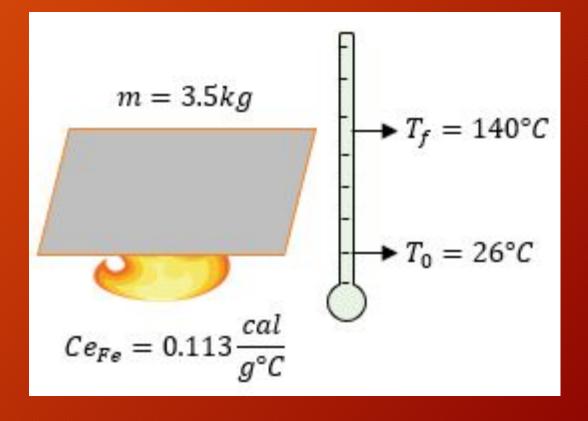
1.- ¿Qué cantidad de calor se necesita suministrar a 600 gramos de agua para que eleve su temperatura de 25°C a 100°C?


$$\Delta Q = mC_e \left(T_f - T_0 \right)$$

$$\Delta Q = (600g) \left(1 \frac{cal}{g^{\circ}C}\right) (100^{\circ}C - 25^{\circ}C)$$

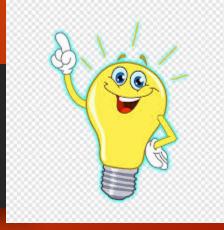
$$\Delta Q = (600g) \left(1 \frac{cal}{g^{\circ}C} \right) (75^{\circ}C)$$

$$\Delta Q = (600g) \left(\frac{cal}{g^{\circ}C} \right) (75^{\circ}C) = 45000cal$$



¿Cuántas calorías se deben suministrar para que un pedazo de metal de hierro de 3.5 Kg eleve su temperatura de 26°C a 140°C?

Solución:


▲ Q= 45087 cal

Tarea:

Determinar la cantidad de calor que cede al ambiente una barra de plata de 5200 g al enfriarse de 130°C a 10°C.

Considerar el CeAg: 0,056 cal/g°C

