Potencias de base y exponente entero (Página 38)

Si se multiplica una cantidad impar de veces el resultado es negativo, si se multiplica una cantidad par de veces el resultado es positivo.

(-2)5	(-2) • (-2) • (-2) • (-2)	-32	Impar	-
(-2)6	$(-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)$	64	Par	+
(-3)4	(-3) • (-3) • (-3) • (-3)	81	Par	+
(-3)5	(-3) • (-3) • (-3) • (-3)	-243	Impar	-
(-1) ⁷	$(-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1) \cdot (-1)$	-1	Impar	-
(-1)8	(-1) • (-1) • (-1) • (-1) • (-1) • (-1) • (-1)	1	Par	+

Página 40

• Se utilizó la propiedad de división de potencias con igual base para mostrar que $2^{-3} = \frac{1}{2^3}$.

Página 42

- 1.a. Negativo
- b. Positivo
- **2. a.** (-6)⁸ **b.** -4⁶
- **3. a.** -(3 3 3 3 3 3)
- **b.** (-11) (-11)

- c. 8 8 8 8 **d.** 2•2•2

c. Positivo

d. Negativo

c. (-4)⁶ **d.** (-8)³

f. –(15 • 15)

- 4 a -3 **5. a.** 625
- **c** –81 e. -243

e. -8³

e. Positivo

f. Positivo

e. -(7 • 7 • 7)

f. 29

- **b.** -256 **d.** 10 000
- f. -144 e. Sí
- c. Sí **6. a.** No, debe ser –16 807.
 - - **d.** No, debe ser $\frac{1}{2}$
- f. No, debe ser 8.

- Son incorrectas:
 - $-2^{\circ} = 1$, pues $-2^{\circ} = -1$
 - $-(-3)^0 = 1$, pues $-(-3)^0 = -1$ $(-3)^0 = -1$, pues $(-3)^0 = 1$

Página 43

- 8. a. 83 dm3
- **b.** $2^0 + 2^1 + 2^2 + 2^3 + ... + 2^{31}$
 - 4.294.967.295
- c. Debe escoger a Marcos, por que el 2 solo eleva al 4 y no al (-4) como cree

Potencias de base racional y exponente entero (Página 44)

- Los lados de los triángulos de la figura 1 miden 0,5 cm., los de la figura 2 miden 0,25 cm. y los de la figura 3 miden 0,125 cm.
- 0,51 cm; 0,52 cm; 0,53 cm
- En la figura 1, 3 triángulos (3¹). En la figura 2, 9 triángulos (32). En la figura 3, 27 triángulos (33).
- Tendría 3⁴ triángulos de color.

Página 48

- **b.** $-\frac{1}{216}$ **c.** $\frac{81}{4096}$ **d.** 0,16 **e.** 0,0009 **f.** 0,04

- 5. Beatriz tiene la razón, ya que la potencia $\left(\frac{3}{2}\right)^{-3}$ al tener exponente negativo, su valor es igual al del inverso multiplicativo de la potencia cuyo exponente es positivo.
- **6. a.** $\left(\frac{2}{3}\right)^0 = 1 \text{ y } 1^3 = 1. \text{ Se cumple.}$
- **b.** Cuando se tiene potencia de una potencia, los exponentes se multiplican, y como la multiplicación es conmutativa, entonces se cumple la igualdad.
- 7. a. $\frac{121}{225} \neq \frac{61}{225}$
- **b.** $\frac{1}{4} \neq \frac{1}{2}$
- 8. a. 19,94 cm²

Página 49

- 9. El virus de mayor tamaño es el del sida.
- **10. a.** En la figura 0, el perímetro del triángulo blanco es: $\frac{1}{2}a$.

En la figura 1, el perímetro de cada uno de los triángulos blancos es: $\frac{1}{a}a$.

En la figura 2, el perímetro de cada uno de los triángulos blancos es: $\frac{1}{2}a$.

- **b.** Considerando $n \in \mathbb{N}_{0'}$ el perímetro de cada triángulo mide $\left(\frac{1}{2}\right)$ a.

- **d.** $\frac{1}{64}$ Corresponde a la parte inferior vertical del ojo.
- **e.** *n* = 1, 2, 3, 4, 5, 6

Multiplicación y división de potencias de base racional (Página 50)

- El terreno de Paula tiene un área de $(3,5)^2$ m², y de la mitad de ello $(\frac{1}{2} \cdot (3,5)^2)$ el jardinero ocupó $\frac{1}{10}$, es decir $\left(\frac{1}{10} \cdot \frac{1}{2} \cdot (3,5)^2\right)$. Y como por cada m² cobró \$4500, esto se multiplica por ese valor
- · La primera expresión.
- El área del jardín construido es $\frac{1}{10} \cdot \frac{1}{2} \cdot (3,5)^2$ m², y se quiere saber cuántos terrenos de área (0,2)2 m2 se pueden construir en él, por esto se divide.
- La primera expresión.
- Paula gastó aproximadamente \$2756.
- Se pueden construir aproximadamente 15 terrenos con forma cuadrada de 0.2 m. de lado.

Página 54

- **b.** 256 **c.** $\left(\frac{5}{4}\right)^{10} = \frac{9765625}{1048576}$ **d.** $\frac{1}{64}$
- **2. a.** $\frac{1}{12}$ **b.** 1 **c.** $\frac{2}{5}$ **d.** $\frac{8}{27}$

- **3. a.** $\left(\frac{6}{5}\right)^2 \cdot \left(\frac{6}{5}\right)^3 = \left(\frac{6}{5}\right)^{2+3} = \left(\frac{6}{5}\right)^5 = \frac{7776}{3125}$ **b.** $-\frac{1}{512}$
- Error: Se utilizó la propiedad de multiplicación de potencias con igual base, siendo que lo propuesto es una suma de potencias. Lo correcto es: $2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7$
- **5. a.** $\frac{1}{\left(\frac{a}{b}\right)^n} = 1 : \frac{a^n}{b^n} = 1 \cdot \frac{b^n}{a^n} = \left(\frac{b}{a}\right)^n = \left(\frac{a}{b}\right)^n$
 - **b.** $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} = \frac{a^n}{1} \cdot \frac{1}{b^n} = \frac{1}{a^{-n}} \cdot \frac{b^{-n}}{1} = \left(\frac{b}{a}\right)^{-n}$
- 6. $D = \frac{160}{9} \text{ m}^2$

Página 55

7. a. Superficie construida: $\left(\frac{1}{3}\right)^4 + \left(\frac{1}{3}\right)^3 = \frac{1}{81} + \frac{1}{27} = \frac{1+3}{81} = \frac{4}{81}$ km⁻¹

Superficie total: $\frac{1}{2} \cdot \frac{1}{4} \text{ km}^2 = \frac{1}{8} \text{ km}^2$

Superficie sin construir: $\left(\frac{1}{8} - \frac{4}{81}\right)$ km² = $\frac{49}{648}$ km²

Y como $\frac{49}{648} > \frac{4}{81}$, el terreno cumple con la condición solicitada por don

- b. La mitad del cociente es 8.
- **c.** En el caso propuesto por Danilo sí se cumple, pues 4 2 = 4: 2, pero esto no siempre es así, a continuación se muestran dos contraejemplos:

$$\left(\frac{2}{3}\right)^6: \left(\frac{2}{3}\right)^2 = \left(\frac{2}{3}\right)^{6:2} = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$$

Sin embargo: $\left(\frac{2}{2}\right)^6 + \left(\frac{2}{2}\right)^2 = \frac{2^6}{2^6} : \frac{2^2}{2^2} = \frac{64}{770} : \frac{4}{0} = \frac{16}{91}$, y ocurre que $\frac{8}{27} \neq \frac{16}{91}$

Contraejemplo 2:

$$\left(\frac{1}{2}\right)^9 : \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{9:3} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

Sin embargo lo correcto es: $\left(\frac{1}{2}\right)^9 : \left(\frac{1}{2}\right)^3 = \frac{1}{2^9} : \frac{1}{2^3} = \frac{1}{512} : \frac{1}{9} = \frac{1}{64}$

Crecimiento y decrecimiento exponencial (Página 56)

Mes	Dinero \$
1	60 000
2	60 600
3	61 206
4	61 818,06
5	62 436,2406
6	63,060,60301

- Porque en términos de porcentaje: 1,01 = 100 % + 1 %
- En el mes 11: 60 000 1,01¹⁰
- En el mes n: 60 000 1,01ⁿ

Página 58

- Si x = 0.5, entonces $y \approx 0.7071...$ Si x = 4, entonces y = 0.0625
- **2. a.** 1° lugar: \$ 162 000; 2° lugar: \$54 000; 3° lugar: \$18 000; 4° lugar: \$6 000
- b. Sí, a ese ritmo logran hacer más de 400 vasijas.
- c. Después de 3 días se han exterminado 1.250 conejos, por lo que quedan
- d. 6 veces en 6 horas (En 6 horas y 4 minutos aplaudiría una 7° vez).
- e. Juan: \$5 000; Diego: \$6 105.
- f. Este mes paga \$25 920.
- 3. a. La población A tendrá 125 bacterias y la población B tendrá 576.
 - **b.** 701 bacterias

Página 59

4. a. $2 \cdot 2^5 = 2^6$

- **b.** $2^2 \cdot 2^6 = 2^8$
- Etapa 5 Etapa 7 Etapa 6 625 3 125 15 625
- **b.** 5²⁹

c. 19531 mensajes

■ ¿Cómo voy? Evaluación de proceso 2 (Página 60 y 61)

1620

1. a. Semana Cocineros nuevos 0 10 20 2 60 180 3 4 540

Semana	Cocineros nuevos
1	20 • 3°
2	20 • 3¹
3	20 • 3 ²
4	20 • 3 ³
5	20 • 3 ⁴

El término general de los cocineros nuevos es 20 • 3^{n-1} , $n \in \mathbb{N}$.

- c. El término general de los cocineros totales al finalizar la semana n es, $10 \cdot 3^n$, $n \in \mathbb{N}$.
- **2.a.** $1,\overline{1} = \frac{10}{9}$

- **b.** 0.9 = 1
- **3. a.** 5 ns = $5 \cdot 10^{-9}$ s = 0,000000005 s 0,34 Gs = 0,34 • 109 s = 340 000 000 s
 - **b.** No es correcto, ya que 30 μ m = 3 10⁻⁵ m

Actividades complementarias (Página 63)

- 1. $H_n = 4n, n \in \mathbb{N}_0$
- 2. a. En 1 día habrán 5²⁵ nuevas bacterias; después de 2 días habrán 5⁴⁹ nuevas bacterias y después de 10 días habrán 5²⁴¹ nuevas bacterias.
 - **b.** Transcurridas n horas hay 5^{n+1} nuevas bacterias.

Qué aprendí? Evaluación final (Página 64 a la 66)

Operatoria en los números racionales

- 1. a. ∈ℚ
- c. $\in \mathbb{Q}$
- $d. \in \mathbb{Z}, \mathbb{Q}$ e. $\in \mathbb{Q}$
- f. $\in \mathbb{Q}$

- **2.a.** $\frac{511}{30}$
- **b.** $\frac{121}{180}$

3.a. Conmutatividad

$$\frac{5}{3} - \frac{2}{5} = \left(-\frac{2}{5}\right) + \frac{5}{3}$$
$$\frac{25 - 6}{15} = \frac{-6 + 25}{15}$$

$$\left[\left(-\frac{5}{3} \right) + \frac{7}{4} \right] + \frac{1}{2} = \left(-\frac{5}{3} \right) + \left(\frac{7}{4} + \frac{1}{2} \right)$$
$$\frac{1}{12} + \frac{1}{2} = \frac{5}{3} + \frac{9}{4}$$
$$\frac{7}{12} = \frac{7}{12}$$

	15 15	12 12
4.	Número decimal	Fracción
	$\left(5 + \frac{1}{3}\right) - (-2) \cdot 7$	La diferencia entre la suma de cinco y un tercio con el producto entre menos dos y siete.
	$\frac{1}{4}$ - (10 - (-6))	Un cuarto menos la resta entre diez y menos seis.
	7: (-8) - $\left(-6 + \frac{2}{5}\right)$	La diferencia entre el cociente de siete y menos

- **5. a.** (c-b) debe ser divisible por a; (c-b) y a deben tener signos opuestos.
 - **b.** (c-b) no debe ser divisible por a; (c-b) y a deben tener igual signo.
- Se encuentra a $29\frac{5}{6}$ bajo el nivel del mar.

Potencias

- **8. a.** 4³: 2³: 2³
- **b.** $\left(\frac{4}{5}\right)^2 : \left(\frac{25}{16}\right)^{-1}$
- c. $(-6)^2$: $(-6)^4 \cdot \left(\frac{1}{6}\right)^{-2}$
- **d.** $\left(\frac{2}{3}\right)^4 \cdot \left(\frac{1}{6}\right)^{-4} : 4^4 \cdot (-5,23)^0$

- **b.** 2500

10. a. Falsa

$$\frac{2^3}{4^5} \neq 2^{3-5}$$

Contraejemplo: 8/1024 ≠ 256

b. Verdadera

$$\left(\frac{a}{b}\right)^{-n} = \frac{a^{-n}}{b^{-n}} = a^{-n} \cdot \frac{1}{a^n} \cdot \frac{b^n}{1} = \left(\frac{b}{a}\right)^n$$

- - **b.** Área $ABCD = 42 \text{ cm}^2 = 16 \text{ cm}^2$

Área
$$PSRQ = (2\sqrt{2})^2 \text{ cm}^2 = 8 \text{ cm}^2 = 16 \cdot \left(\frac{1}{2}\right)^1 \text{ cm}^2$$

Área
$$WXYZ = 2^2 \text{ cm}^2 = 4 \text{ cm}^2 = 16 \cdot \left(\frac{1}{2}\right)^2 \text{ cm}^2$$

- c. Sexto cuadrado: Área = $16 \cdot \left(\frac{1}{2}\right)^5$ cm²
- **d.** Décimo cuadrado: Área = $16 \cdot \left(\frac{1}{2}\right)^9$ cm²
- 12. a. Disminuye aproximadamente en un 87 %.
 - **b.** $(\frac{3}{5})^{r}$
 - c. $\left(\frac{1}{2}\right)^6 \cdot 6 = \frac{3}{32}$
- **13. a.** $2^9 \cdot \frac{13}{256} \text{ mn} = 2 \cdot 13 \text{ mn} = 26 \text{ mn}$
 - b. Es necesario doblarla al menos 8 veces.
 - **c.** $2^n \cdot \frac{13}{256} = 2^{n-8} \cdot 13, n \in \mathbb{N}.$
- **14. a.** El vencedor es Cristian, pues en la 6° jugada, él deja un segmento de 0,78125 cm.
 - **b.** En la 1° jugada= $\frac{50}{2}$ = 50 $\frac{1}{2}$
 - En la 2° jugada= $50 \cdot \frac{1}{2} \cdot \frac{1}{2} = 50 \cdot \frac{1}{2^2}$
 - En la 5° jugada= $50 \cdot \frac{1}{2^5} = 50 \cdot 2^{-5}$